COVID-19 NPIS

Release 1.0.0

Priesemann group

CONTENTS

1	Installation	3				
2	Running the simulation(s)	5				
3	Understanding our model					
4	Model 4.1 Main model 4.2 Disease spread 4.3 Reproduction number 4.4 Number of tests 4.5 Deaths 4.6 Utility	9 9 11 14 19 21				
5	5.1 Data converter	25 25 28 38				
6	6.1 Data	45 45 55				
7	7.1 Code formatting	65 65 65				
8	8.1 Debugging nans with tensorflow	67 67 67 68				
9	9.1 Population data	69 70 70 70 71				
10	Indices and tables	73				

Python Module Index	75
Index	77

Covid-19Hierachical Bayesian Model

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

We use some functions of our toolbox for inference and forecast of the spread of the Coronavirus. We supply this toolbox via a github submodule, which can to be initialized while cloning the repository. Alternatively our toolbox can be installed with pip.

```
git clone --recurse-submodules git@github.com:Priesemann-Group/covid19_npis_europe.git
```

Next install all required python libaries. Tensorflow isn't put in the requirements.txt to allow the installation of another distribution (tensorflow-gpu for instance)

```
pip install tensorflow==2.4.1
pip install -r requirements.txt
```

Now we should be setup and ready to run our code or look into the source code.

RUNNING THE SIMULATION(S)

If you want to run our code there is a work flow you can follow.

1. **Create or generate a dataset.** We supply multiple scripts to generate different datasets. All of them can be found in the *scripts/data_generators/* folder. All of them create the data files inside the *data* folder. You can run them easily with

```
python script.py
```

Alternatively you create your own dataset, we wrote are short guide which can help you get your data inserted into our model see here.

2. **Load dataset** Before we can start to fit with our model we have to load our data files. There are multiple ways to do this but all of them rely on the <code>covid19_npis.ModelParams</code> class. Have a look into the constructors to see all possibilities.

The easiest way is to load a complete data folder e.g. *data/Germany_bundesländer* (generated with the Germany bundesländer.py script).

```
modelParams = covid19_npis.ModelParams.from_folder("./data/Germany_

→bundesländer/")
```

3. **Generate model with data** Now according to the dimensions of our data (i.e. time,number of countries...) we create our model. This is done by passing the *modelParams* to our pymc4 model instance.

```
this_model = covid19_npis.model.main_model(modelParams)
```

4. **Sampling** Sampling is done with the pymc4.sample() function and our model from above. The sampling function generates an arviz.InferenceData object, which we can later use for the plotting or for other sample stats.

(continues on next page)

(continued from previous page)

```
Best practise is to measure the time the sampling takes and to save the trace_

after sampling.

# Save the trace

name, fpath = covid19_npis.utils.save_trace(

trace, modelParams, fpath="./traces",
)
```

5. Plotting Todo

CHAPTER

THREE

UNDERSTANDING OUR MODEL

We supply our model which we used in our publication (wip). If you want to know how it works in detail have a look into our Methods section in the publication and the documentation here. You can also use our functions to create your own model but that could take some effort.

We suggest you start with the <code>covid19_npis.model.main_model</code> and work your way threw from top to bottom. It is always helpful to have the tensorflow documentation. opened. We use <code>tf.einsum</code> so you should have a look at Einstein notation if you don't know it by heart yet.

CHAPTER

FOUR

MODEL

4.1 Main model

covid19_npis.model.main_model(modelParams)

Todo: Create Docstring for this function.

4.2 Disease spread

covid19_npis.model.disease_spread.**InfectionModel**(*N*, *E_0_t*, *R_t*, *C*, *gen_kernel*)
This function combines a variety of different steps:

- 1. Converts the given E_0 values to an exponential distributed initial E_{0_t} with an length of l this can be seen in _construct_E_0_t ().
- 2. Calculates R_{eff} for each time step using the given contact matrix C:

$$\begin{split} R_{diag} &= \mathrm{diag}(\sqrt{R}) \\ R_{eff} &= R_{diag} \cdot C \cdot R_{diag} \end{split}$$

3. Calculates the \tilde{I} arrays i.e. new infectious for each age group and country, with the efficient reproduction matrix R_{eff} , the susceptible pool S, the population size N and the generation interval $g(\tau)$. This is done recursive for every time step.

$$\tilde{I}(t) = \frac{S(t)}{N} \cdot R_{eff} \cdot \sum_{\tau=0}^{t} \tilde{I}(t-1-\tau)g(\tau)$$
$$S(t) = S(t-1) - \tilde{I}(t-1)$$

Parameters

- E_0 Initial number of infectious. batch_dims, country, age_group
- R_t Reproduction number matrix. time, batch_dims, country, age_group
- N Total population per country country, age_group

- C inter-age-group Contact-Matrix (see 8) country, age_group, age_group
- gen kernel Normalized PDF of the generation interval batch dims(?), 1

Returns Sample from distribution of new, daily cases

```
covid19_npis.model.disease_spread.construct_generation_interval (name='g', mu_k=120.0, mu_t=120.0, mu_t=120.
```

Generates the generation interval with two underlying gamma distributions for mu and theta

$$g(\tau) = Gamma(\tau; k = \frac{\mu_{D_{\rm gene}}}{\theta_{D_{\rm gene}}}, \theta = \theta_{D_{\rm gene}})$$

whereby the underlying distribution are modeled as follows

$$\mu_{D_{\rm gene}} \sim Gamma(k = 4.8/0.04, \theta = 0.04)$$
 $\theta_{D_{\rm gene}} \sim Gamma(k = 0.8/0.1, \theta = 0.1)$

Parameters

- name (string) Name of the distribution for trace and debugging.
- mu_k (number, optional) Concentration/k parameter for underlying gamma distribution of mu ($\mu_{D_{\text{gene}}}$). 120
- mu_theta (number, optional) Scale/theta parameter for underlying gamma distribution of mu ($\mu_{D_{grape}}$). 0.04
- theta_k (number, optional) Concentration/k parameter for underlying gamma distribution of theta ($\theta_{D_{\rm gene}}$). 8
- theta_theta (number, optional) Scale/theta parameter for underlying gamma distribution of theta ($\theta_{D_{gene}}$). 0.1
- 1 (number, optional) Length of generation interval i.e t in the formula above 16

Returns Normalized generation interval pdf

Generates a prior for E_0_t, based on the observed number of cases during the first 5 days. Currently it is implemented to take the first value of R_t, and multiply the inverse of R_t with first observed values until the begin of the simulation is reached. This is then used as a prior for a lognormal distribution which set the E_0_t.

Parameters

- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- len_gen_interv_kernel (number) ... some description
- R_t (tf.tensor) Time dependent reproduction number tensor R(t). time, batch, country, age group
- mean_gen_interv (countries) ... some description

• mean_test_delay (number, optional) - ... some description 10

Returns

E_0_t: some description time, batch, country, age_group

Constructs delay d in hierarchical manner:

$$\begin{split} \mu_c^d &\sim \text{LogNormal} \left(\mu = 2.5, \sigma = 0.1\right) \quad \forall c \\ \sigma_c^d &\sim \\ d_c &= \text{PDF-Gamma}(\mu_c^d, \sigma_d) \end{split}$$

Parameters

- name Name of the delay distribution
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- loc Location of the hierarchical Lognormal distribution for the mean of the delay.
- scale Theta parameter for now#
- length_kernel Length of the delay kernel in days.

Returns Generator for gamma probability density function. batch, country, kernel(time)

Todo: Think about sigma distribution and how to parameterize it. Also implement that.

4.3 Reproduction number

 $\verb|covid19_npis.model.reproduction_number._fsigmoid|(t, l, d) \\ Calculates and returns$

$$\frac{1}{1+e^{-4/l*(t-d)}}$$

Parameters

- t Time, "variable"
- 1 Length of the change point, determines scale
- d Date of the change point, determines location

covid19_npis.model.reproduction_number._create_distributions (modelParams)

Returns a dict of distributions for further processing/sampling with the following priors:

$$\begin{split} \alpha_{i}^{\dagger} &\sim \mathcal{N}\left(-1,2\right) \quad \forall i, \\ \Delta \alpha_{c}^{\dagger} &\sim \mathcal{N}\left(0,\sigma_{\alpha,\text{country}}\right) \quad \forall c, \\ \Delta \alpha_{a}^{\dagger} &\sim \mathcal{N}\left(0,\sigma_{\alpha,\text{age}}\right) \quad \forall a, \\ \sigma_{\alpha,\text{country}} &\sim HalfNormal\left(0.1\right), \\ \sigma_{\alpha,\text{age}} &\sim HalfNormal\left(0.1\right) \end{split}$$

$$\begin{split} l_{\text{positive}}^{\dagger} &\sim \mathcal{N}\left(3,1\right), \\ l_{\text{negative}}^{\dagger} &\sim \mathcal{N}\left(5,2\right), \\ &\Delta l_{i}^{\dagger} \sim \mathcal{N}\left(0,\sigma_{l,\text{interv.}}\right) \quad \forall i, \\ \sigma_{l,\text{interv.}} &\sim HalfNormal\left(1\right) \\ &\Delta d_{i} \sim \mathcal{N}\left(0,\sigma_{d,\text{interv.}}\right) \quad \forall i, \\ &\Delta d_{c} \sim \mathcal{N}\left(0,\sigma_{d,\text{country}}\right) \quad \forall c, \\ \sigma_{d,\text{interv.}} &\sim HalfNormal\left(0.3\right), \\ \sigma_{d,\text{country}} &\sim HalfNormal\left(0.3\right) \end{split}$$

Parameters modelParams (covid19_npis.ModelParams) - Instance of modelParams, mainly used for number of age groups and number of countries.

Returns interventions, distributions

covid19_npis.model.reproduction_number.construct_R_t (name, modelParams, R_0, include noise=True)

Constructs the time dependent reproduction number R(t) for every country and age group. There are a lot of things happening here be sure to check our paper for more indepth explanations!

We build the effectivity in an hierarchical manner in the unbounded space:

$$\alpha_{i,c,a} = \frac{1}{1 + e^{-\alpha_{i,c,a}^{\dagger}}},$$

$$\alpha_{i,c,a}^{\dagger} = \alpha_{i}^{\dagger} + \Delta \alpha_{c}^{\dagger} + \Delta \alpha_{a}^{\dagger}$$

The length of the change point depends on the intervention and whether the strength is increasing or decreasing:

$$\begin{split} l_{i,\mathrm{sign}(\Delta\gamma)} &= \ln\left(1 + e^{l_{i,\mathrm{sign}(\Delta\gamma)}^\dagger}\right), \\ l_{i,\mathrm{sign}(\Delta\gamma)}^\dagger &= l_{\mathrm{sign}(\Delta\gamma)}^\dagger + \Delta l_i^\dagger, \end{split}$$

The date of the begin of the intervention is also allowed to vary slightly around the date $d_{i,c}^{\text{data}}$ given by the Oxford government response tracker:

$$d_{i,c,p} = d_{i,c,p}^{\mathrm{data}} + \Delta d_i + \Delta d_c$$

And finally the time dependent reproduction number R_e^* :

$$\begin{split} \gamma_{i,c,p}(t) &= \frac{1}{1 + e^{-4/l_{i,\mathrm{sign}(\Delta\gamma)} \cdot (t - d_{i,c,p})}} \cdot \Delta \gamma_{i,c,p}^{\mathrm{data}} \\ \gamma_{i,c}(t) &= \sum_{p} \gamma_{i,c,p}(t) \\ R_e^* &= R_0^* e^{-\sum_{i}^{N_i} \alpha_{i,c,a} \gamma_{i,c}(t)} \end{split}$$

We also sometimes call the time dependent reproduction number R t!

Parameters

- name (str) Name of the distribution (gets added to trace).
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- R_0 (tf.tensor) Initial reproduction number. Should be constructed using construct_R_0() or construct_R_0_old(). batch, country, age group

Returns Time dependent reproduction number tensor R(t), time, batch, country, age group

Constructs R_0 in the following hierarchical manner:

$$\begin{split} R_{0,c}^* &= R_0^* + \Delta R_{0,c}^*, \\ R_0^* &\sim \mathcal{N}\left(2,0.5\right) \\ \Delta R_{0,c}^* &\sim \mathcal{N}\left(0,\sigma_{R^*,\text{country}}\right) \quad \forall c, \\ \sigma_{R^*,\text{country}} &\sim HalfNormal\left(0.3\right) \end{split}$$

Parameters

- name (str) Name of the distribution (gets added to trace).
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- loc(number) Location parameter of the R^*_0 Normal distribution.
- scale (number) Scale paramter of the R^*_0 Normal distribution.
- hn_scale (number) Scale parameter of the sigma_{R^*, text{country}} HaflNormal distribution.

Returns R_0 tensor batch, country, age_group

Constructs lambda_0 in the following hierarchical manner:

$$\begin{split} \lambda_{0,c}^* &= \lambda_0^* + \Delta \lambda_{0,c}^*, \\ \lambda_0^* &\sim \mathcal{N}\left(0.4, 0.1\right) \\ \Delta \lambda_{0,c}^* &\sim \mathcal{N}\left(0, \sigma_{\lambda^*, \text{country}}\right) \quad \forall c, \\ \sigma_{\lambda^*, \text{country}} &\sim HalfNormal\left(0.05\right) \end{split}$$

Parameters

- name (str) Name of the distribution (gets added to trace).
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- **loc** (number) Location parameter of the R^*_0 Normal distribution.
- scale (number) Scale paramter of the R^*_0 Normal distribution.
- hn_scale (number) Scale parameter of the sigma_{R^*, text{country}} HaflNormal distribution.

Returns R_0 tensor batch, country, age_group

Old constructor of R_0 using a gamma distribution:

$$R_0 \sim Gamma (\mu = 2.5, \beta = 2.0)$$

Parameters

- name (string) Name of the distribution for trace and debugging.
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.

- **mean** Mean μ of the gamma distribution.
- **beta** Rate β of the gamma distribution.

Returns R_0 tensor batch, country, age_group

4.4 Number of tests

covid19_npis.model.number_of_tests.weekly_modulation (name, modelParams, cases)
Adds a weekly modulation of the number of new cases:

cases_modulated = cases
$$\cdot \left(1 - f(t)\right)$$
, with
$$f(t) = \left(1 - w\right) \cdot \left(1 - \left|\sin\left(\frac{\pi}{7}t - \frac{1}{2}\Phi_w\right)\right|\right)$$

The modulation is assumed to be the same for all age-groups within one country and determined by the "weight" and "offset" parameters. The weight follows a sigmoidal distribution with normal prior of "weight_cross". The "offset" follows a VonMises distribution centered around 0 (Mondays) and a wide SD (concentration parameter = 2).

Parameters

- name (str or None,) The name of the cases to be modulated (gets added to trace).
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- cases (tf.tensor) The input array of daily new cases for countries and age groups

Returns cases modulated

Return type tf.tensor

Todo:

- · check prior parameters
- different modulations across: age, country?
- check: are (cumulative) case numbers same as in unmodulated case? need some kind of normalization?
- · store and plot parameters at end

covid19_npis.model.number_of_tests.generate_testing(name_total, name_positive, modelParams, new_E_t)

High level function for generating/simulating testing behaviour.

Constructs B splines Delay cases

Parameters

- name_total (str,) Name for the total tests performed
- name positive (str,) Name for the positive tests performed
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- new_E_t (tf. Tensor) New cases $E_{age,a}$. batch, time, country, age_group

Returns $(n_{\Sigma,c,a}(t), n_{+,c,a}(t))$ Total and positive tests by age group and country (batch, time, country, age_group) x 2

Todo:

• Add more documenation for this function

covid19_npis.model.number_of_tests._calc_positive_tests (new_E_t_delayed, phi plus, phi age)

$$n_{+,c,a}(t) = \tilde{E}_{\text{delayTest},c,a}(t) \cdot \phi_{+,c}(t) \cdot \phi_{\text{age},a},$$

Parameters

- name (str) Name of the variable for the new positive cases $n_{+,c,a}(t)$ in the trace.
- new_E_t_delayed (tf.Tensor) New cases with reporting delay $\tilde{E}_{\text{delayTest},c,a}(t)$. batch, time, country, age_group
- **phi_plus** (tf.Tensor) Fraction of positive tests $\phi_{+,c}(t)$. batch, time, country
- phi_age (tf. Tensor) Fraction of positive tests $\phi_{age,a}$. batch, age_group

Returns $n_{+,c,a}(t)$ batch, time, country, age_group

covid19_npis.model.number_of_tests._calc_total_number_of_tests_performed (new_E_t_delayed, phi_tests_reported, phi_plus, eta, xi)

$$\begin{split} n_{\Sigma,c,a}(t) &= \phi_{\text{tests reported},c} \\ &\cdot (\,\tilde{E}_{\text{delayTest},c,a}(t) \cdot \phi_{+,c}(t) \\ &+ \tilde{E}_{\text{delayTest},c,a}(t) \cdot \phi_{+,c}(t) \cdot \eta_{\text{traced},c}(t) \\ &+ \xi_c(t)) \end{split}$$

Parameters

- name (str) Name of the variable for the total number of tests performed $n_{\Sigma,c,a}(t)$ in the trace.
- new_E_t_delayed (tf.Tensor) New cases with reporting delay $\tilde{E}_{\text{delayTest},c,a}(t)$. batch, time, country, age_group
- phi_tests_reported (tf. Tensor) Difference in fraction for different countries $\phi_{\text{tests reported},c}$ batch, country
- phi_plus (tf. Tensor) Fraction of positive tests $\phi_{+,c}(t)$. batch, time, country
- eta (tf.Tensor) Number of traced persons per case with subsequent negative test per case $\eta_{traced,c}(t)$. batch, time, country
- **xi** (tf.Tensor) Base rate of testing per day that leads to negative tests $\xi_c(t)$. batch, time, country

Returns $n_{\Sigma,c,a}(t)$ batch, time, country, age_group

4.4. Number of tests

covid19_npis.model.number_of_tests._construct_phi_tests_reported(name, modelParams, mu_loc=1.0, mu_scale=1.0, sigma_scale=1.0)

Construct the different of the fraction of tests for each country in the following hierarchical manner:

$$\begin{split} \phi_{\text{tests reported},c} &= \frac{e^{\phi_{\text{tests reported},c}^{\dagger}}}{e^{\phi_{\text{tests reported},c}^{\dagger}}}, \\ \phi_{\text{tests reported},c}^{\dagger} &\sim \mathcal{N}(\mu_{\phi_{\text{tests reported}}^{\dagger}}, \sigma_{\phi_{\text{tests reported}}}^{\dagger}), \\ \mu_{\phi_{\text{tests reported}}^{\dagger}} &\sim \mathcal{N}(1,1), \\ \sigma_{\phi_{\text{tests reported}}^{\dagger}} &\sim HalfCauchy(1). \end{split}$$

Parameters

- name (str) Name of the variable $\phi_{\text{tests reported},c}$. Will also appear in the trace with this name.
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- mu_loc (optional) Location parameter for the Normal distribution $\mu_{\phi_{\mathrm{tests reported}}^\dagger}$. 1.0
- mu_scale (optional) Scale parameter for the Normal distribution $\mu_{\phi_{\mathrm{tests \, reported}}^\dagger}$. 1.0
- sigma_scale (optional) Scale parameter for the $\sigma_{\phi_{\text{tests reported}}^{\dagger}}$ HalfCauchy distribution. 1.0

Returns $\phi_{\text{tests reported},c}$ batch, country

Fraction of positive tests $\phi_{age,a}$.

$$\begin{split} \phi_{\text{age},a} &= e^{\phi_{\text{age},a}^{\dagger}} \\ \phi_{\text{age},a}^{\dagger} &= \mathcal{N}\left(0,\sigma_{\phi_{\text{age},a}^{\dagger}}\right) \\ \sigma_{\phi_{\text{age},a}^{\dagger}} &= HalfNormal\left(0.2\right) \end{split}$$

Parameters

- name (str) Name of the variable $\phi_{age,a}$. Will also appear in the trace with this name.
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- sigma_scale Scale parameter for the HalfNormal distribution $\sigma_{\phi_{\text{per},a}^{\dagger}}$. 0.2

Returns $\phi_{age,a}$ batch, age_group

covid19_npis.model.number_of_tests._construct_reporting_delay(name, modelParams, m_ast,
mu_loc=1.5,
mu_scale=0.4,
theta_sigma_scale=0.2,
m_sigma_scale=3.0)

$$m_{D_{\mathrm{test}},c,b} = m_{D_{\mathrm{test}},c,b}^* + \Delta m_{D_{\mathrm{test}},c}$$

$$\begin{split} \Delta m_{D_{\text{test}},c} &\sim \mathcal{N}(0,\sigma_{m_{D \text{ test}}}), \\ \sigma_{m_{D \text{ test}}} &\sim HalfNormal(3), \\ \theta_{D_{\text{test}},c} &\sim \mathcal{N}(\mu_{\theta_{D_{\text{test}}}},\sigma_{\theta_{D_{\text{test}}}}), \\ \mu_{\theta_{D_{\text{test}}}} &\sim \mathcal{N}(1.5,0.4), \\ \sigma_{\theta_{D_{\text{test}}}} &\sim HalfNormal(0.2). \end{split}$$

Parameters

- name (str) Name of the reporting delay variable $m_{D_{\text{test}},c,b}$.
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- m_ast $(tf.Tensor) m_{D_{tot.C.b}}^*$ batch, country, spline
- mu_loc (optional) Location parameter for the Normal distribution $\mu_{\theta_{Diest}}$. 1.5
- mu_scale (optional) Scale parameter for the Normal distribution $\mu_{\theta_{D_{test}}}$. 0.4
- theta_sigma_scale (optional) Scale parameter for the HalfNorml distribution $\sigma_{\theta_{D_{test}}}$. 0.2
- m_sigma_scale (optional) Scale parameter for the HalfNorml distribution $\sigma_{m_{D \text{ test}}}$.

Returns $m_{D_{\text{test}},c,b}$ batch, country, spline

covid19_npis.model.number_of_tests._calc_reporting_delay_kernel (name, m, theta, length_kernel=14)

Calculates the pdf for the gamma reporting kernel.

$$\begin{split} f_{c,t}(\tau) &= Gamma(\tau; \alpha = \frac{m_{D_{\text{test}},c}(t)}{\theta_{D_{\text{test}}},c} + 1, \beta = \frac{1}{\theta_{D_{\text{test}},c}}), \\ &\text{with } f_{c,t} \text{ normalized such that } \sum_{\tau=0}^{T} f_{c,t}(\tau) = 1. \end{split}$$

Parameters

- name Name of the reporting delay kernel $f_{c,t}(\tau)$
- m batch, time, country
- theta batch, country
- length_kernel (optional) Length of the kernel in days 14 days

Returns batch, country, kernel, time

covid19 npis.model.number of tests.construct testing state (name phi,

name_eta, name_xi, name_m_ast, model-Params, num_knots, mu_cross_loc=0.0, mu_cross_scale=10.0, m_mu_loc=12.0, m_mu_scale=2.0, sigma_cross_scale=10.0, m_sigma_scale=1.0)

$$(\phi_{\text{tested},c,b}^{\dagger}, \, \eta_{\text{traced},c,b}^{\dagger}, \, \xi_{c,b}^{\dagger}, \, m_{D_{\text{test}},c,b}^{*}) \sim StudentT_{\nu=4} \left(\boldsymbol{\mu}, \boldsymbol{\Sigma} \right)$$

4.4. Number of tests

where

$$oldsymbol{\mu} = \left(\mu_{\phi_{\perp}^{\dagger}}, \mu_{\eta_{ ext{traced}}^{\dagger}}, \mu_{\xi^{\dagger}}, \mu_{m_{D_{ ext{test}}}}
ight)$$

$$\Sigma \sim LKJ(\eta = 2, \boldsymbol{\sigma} = (\sigma_{\phi}, \sigma_{\eta}, \sigma_{\xi}, \sigma_{m}))$$

with the distributions parametarized in the following hierarchical manner:

$$\begin{split} \mu_{\phi_+^\dagger}, \ \mu_{\eta_{\text{traced}}^\dagger}, \ \mu_{\xi^\dagger} &\sim \mathcal{N}(0, 10), \\ \mu_{m_{D_{\text{test}}}} &\sim \mathcal{N}(12, 2), \\ \sigma_{\phi}, \sigma_{\eta}, \sigma_{\xi} &\sim HalfCauchy(10), \\ \sigma_{m} &\sim HalfNormal(1) \end{split}$$

at last we transform the variables $\phi_{+,c,b},~\eta_{\mathrm{traced},c,b},~\xi_{c,b}$

$$\begin{split} \phi_{+,c,b} &= \frac{e^{\phi_{+,c,b}^{\dagger}}}{e^{\phi_{+,c,b}^{\dagger}}+1}, \\ \eta_{\text{traced},c,b} &= \ln\left(1+e^{\eta_{\text{traced},c,b}^{\dagger}}\right), \\ \xi_{c,b} &= \ln\left(1+e^{\xi_{c,b}^{\dagger}}\right) \frac{n_{\text{inhabitants}}}{10000} \end{split}$$

Parameters

- name_phi (str) Name of the fraction of positive tests variable $\phi_{+,c,b}$.
- name_eta (str) Name of the number of traced persons variable $\eta_{traced,c,b}$.
- name_xi (str) Name of the base tests rate variable $\xi_{c,b}$.
- name_m_ast (str) Name of the testing delay variable $m^*_{D_{test},c,b}$.
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- num_knots Number of knots for the Bspline dimension.
- mu_cross_loc (optional) Location parameter for the three Normal distributions $\mu_{\phi_+^\dagger},~\mu_{\eta_{\rm mond}^\dagger},~\mu_{\xi^\dagger}.~0.0$
- mu_cross_scale (optional) Scale parameter for the three Normal distributions $\mu_{\phi_+^\dagger},~\mu_{\eta_{\rm traced}^\dagger},~\mu_{\xi^\dagger}.~10.0$
- m_mu_loc (optional) Location parameter for the Normal distribution $\mu_{m_{D_{\mathrm{test}}}}$. 12.0
- m_mu_scale (optional) Scale parameter for the Normal distribution $\mu_{m_{D_{\text{test}}}}$. 2.0
- sigma_cross_scale (optional) Scale parameter for the three HalfCauchy distributions σ_{ϕ} , σ_{n} , σ_{ε} . 10.0
- m_sigma_scale (optional) Scale parameter for the HalfNormal distribution σ_m . 1.0

Returns Testing state tuple $(\phi_{+,c,b}, \eta_{\text{traced},c,b}, \xi_{c,b}, m_{D_{\text{test}},c,b}), \theta_{D_{\text{test}}}$. 4 x (batch, country, spline),

covid19_npis.model.number_of_tests.construct_Bsplines_basis (modelParams)
Function to construct the basis functions for all BSplines, should only be called once. Uses splipy python library.

Parameters

• modelParams (covid19_npis.ModelParams) – Instance of modelParams, mainly used for number of age groups and number of countries.

- degree (optional) degree corresponds to exponent of the splines i.e. degree of three corresponds to a cubic spline. 3
- **knots** (list, optional) Knots array used for constructing the BSplines. one knot every 7 days

Returns time, knots?

covid19_npis.model.number_of_tests._calculate_Bsplines (coef, basis)
Calculates the Bsplines given the basis functions B and the coefficients x.

$$x(t) = \sum_{b} x_b B_b(t)$$

Parameters

- coef Coefficients x..., country, spline
- basis Basis functions tensor B. time, spline

Returns x(t) ...,time, country

4.5 Deaths

covid19_npis.model.deaths._construct_reporting_delay(name, modelParams, theta_sigma_scale=0.3, theta_mu_loc=1.5, theta_mu_scale=0.3, m_sigma_scale=4.0, m_mu_loc=21.0, m_mu_scale=2.0)

$$\begin{split} m_{D_{\text{death}},c} &= \ln \left(1 + e^{m_{D_{\text{death}},c}^*} \right) \\ m_{D_{\text{death}},c}^* &\sim \mathcal{N}(\mu_{m_{D_{\text{death}}}}, \sigma_{m_{D_{\text{death}}}}), \\ \mu_{m_{D_{\text{death}}}} &\sim \mathcal{N}(21,2), \\ \sigma_{m_{D_{\text{test}}}} &\sim HalfNormal(4), \\ \theta_{D_{\text{death}},c} &= \frac{1}{4} \ln \left(1 + e^{4\theta_{D_{\text{death}},c}^*} \right) \\ \theta_{D_{\text{death}},c}^* &\sim \mathcal{N}(\mu_{\theta_{D_{\text{test}}}}, \sigma_{\theta_{D_{\text{test}}}}), \\ \mu_{\theta_{D_{\text{death}}}} &\sim \mathcal{N}(1.5,0.3), \\ \sigma_{\theta_{D_{\text{death}}}} &\sim HalfNormal(0.3). \end{split}$$

Parameters

- name (str) Name of the reporting delay variable $m_{D_{test},c,b}$.
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- theta_sigma_scale (optional) Scale parameter for the Normal distribution $\sigma_{\theta_{D_{death}}}$. 0.3
- theta_mu_loc (optional) Location parameter for the Normal distribution $\mu_{\theta_{D_{\text{death}}}}$. 1.5
- theta_mu_scale (optional) Scale parameter for the HalfNormal distribution $\mu_{\theta_{D_{death}}}$. 0.3

4.5. Deaths

- m_sigma_scale (optional) Scale parameter for the HalfNormal distribution $\sigma_{m_{D_{\text{test}}}}$.
 4.0
- m_mu_loc (optional) Location parameter for the Normal distribution $\mu_{m_{D_{\mathrm{death}}}}.$ 21.0
- m_mu_scale (optional) Scale parameter for the Normal distribution $\mu_{m_{D_{death}}}$. 2.0

Returns (m, theta) (batch, country) x 2

covid19_npis.model.deaths._calc_Phi_IFR (name, modelParams, alpha_loc=0.119, $alpha_scale=0.003$, $beta_loc=-7.53$, $beta_scale=0.4$)

Calculates and construct the IFR and Phi IFR:

$$\begin{split} \beta_{\text{IFR,c}} &= \mathcal{N}\left(-7.53, 0.4\right) \\ \alpha_{\text{IFR}} &= \mathcal{N}\left(0.119, 0.003\right) \\ \text{IFR}_c(a^*) &= \frac{1}{100} \exp\left(\beta_{\text{IFR,c}} + \alpha_{\text{IFR}} \cdot a\right) \\ \phi_{\text{IFR,c,a}} &= \frac{1}{\sum_{\substack{a \in \text{nd}(a) \\ \sum a^* = a_{\text{bos}}(a)}}^{} N_{\text{pop}}\left(a^*\right)} \sum_{\substack{a^* = a_{\text{bos}}(a) \\ a^* = a_{\text{bos}}(a)}}^{} N_{\text{pop,c}}\left(a^*\right) \text{IFR}_c\left(a^*\right), \end{split}$$

Parameters

- name (str) Name of the infection fatatlity ratio variable $\phi_{IFR,c,a}$.
- modelParams (covid19_npis.ModelParams) Instance of modelParams, mainly used for number of age groups and number of countries.
- alpha_loc(optional) 0.119
- alpha scale (optional) 0.003
- beta_loc(optional) -- 7.53
- beta_scale (optional) 0.4

Returns Phi_IFR batch, country, age brackets

Calculates delayed deahs from IFR and delay kernel.

$$\begin{split} \tilde{E}_{\text{delayDeath},c,a}(t) &= \phi_{\text{IFR},c,a} \sum_{\tau=0}^{T} \tilde{E}_{c,a}(t-\tau) \cdot f_{c,t}(\tau) \\ f_{c,t}(\tau) &= Gamma(\tau; \alpha = \frac{m_{D_{\text{death},c}}}{\theta_{D_{\text{death}}}} + 1, \beta = \frac{1}{\theta_{D_{\text{death}}}}) \end{split}$$

Parameters

- name (str) Name of the delayed deaths variable $\tilde{E}_{\text{delayDeath},c,a}(t)$.
- new_cases (tf.Tensor) New cases without reporting delay $\dot{E}_{c,a}(t)$. batch, time, country, age_group
- **Phi_IFR** (tf.Tensor) Infection fatality ratio of the age brackets $\phi_{IFR,c,a}$. batch, country, age_group
- \mathbf{m} (tf. Tensor) Median fatality delay for the delay kernel $m_{D_{\text{death},c}}$. batch, country
- theta (tf. Tensor) Scale fatality delay for the delay kernel $\theta_{D_{\text{death}}}$. batch
- length_kernel (optional) Length of the kernel in days 14 days

Returns $\tilde{E}_{\text{delayDeath},c,a}(t)$ batch, time, country, age_group

4.6 Utility

```
covid19_npis.model.utils.gamma(x, alpha, beta)
```

Returns a gamma kernel evaluated at x. The implementation is the same as defined in the tfp.gamma distribution which is probably quiet numerically stable. :param x: :param alpha: :param beta:

```
covid19_npis.model.utils.positive_axes(axes, ndim)
```

Given a list of axes, returns them written as positive numbers

Parameters

- axes (array-like, int) list of axes, positive or negative
- **ndim** (*int*) number of dimensions of the array

Returns

Return type positive list of axes

```
covid19 npis.model.utils.match axes(tensor, target axes, ndim=None)
```

Extend and transpose dimensions, such that the dimension i of *tensor* is at the position target_axes[i]. Missing dimension are filled with size 1 dimensions. This is therefore a generalization of tf.expand_dims and tf.transpose and implemented using these. If ndim is None, the number of the dimensions of the result is the minimum fullfilling the requirements of target_axes

Parameters

- **tensor** (*tf.Tensor*) The input tensor with len(tensor.dims) == len(target_axes)
- target_axes (list of ints) Target positions of the dimensions. Can be negative.

Returns The transposed and expanded tensor.

Return type tensor

Calling tf.einsum with indices instead of a string. For example einsum_indexed(t1, t2, inner1=1, inner2=0, outer1=0, outer2=1) corresponds to the *tf.einsum* string "ab...,bc...->ac..." (Matrix product) and a matrix vector product "...ab,...b,->...a" is parameterized by einsum_indexed(t1, t2, inner1=-1, inner2=-1, vec1=-2)

Parameters

- tensor1 (tensor) Input tensor 1
- tensor2 (tensor) Input tensor 2
- inner1 (int or list) The axes in tensor 1 over which a inner product is taken
- inner2 (int or list) The axes indices in tensor 2 over which a inner product is taken
- outer1 (int or list) The axes indices in tensor 1 over which a outer product is taken
- outer2 (int or list) The axes indices in tensor 2 over which a outer product is taken
- **vec1** (*int or list*) The axes indices of the matrix in a matrix-vector product which are "staying" in the result. This is for the case where tensor1 corresponds to the matrix.
- **vec2** (*int or list*) The axes indices of the matrix in a matrix-vector product which are "staying" in the result. This is for the case where tensor2 corresponds to the matrix.

4.6. Utility 21

- targ_outer1 (int or list) The axes indices in the result where the outer product axes of tensor 1 is mapped to. If omitted, the position is inferred such that the order stays the same, and, if equal, the indices of tensor 1 are to the left of the indices of tensor 2 for outer products.
- targ_outer2 (int or list) The axes indices in the result where the outer product axes of tensor 2 is mapped to. If omitted, the position is inferred such that the order stays the same, and, if equal, the indices of tensor 1 are to the left of the indices of tensor 2 for outer products.

Returns

Return type tensor

```
covid19_npis.model.utils.concatenate_axes (tensor, axis1, axis2)
Concatenates two consecutive axess
```

Parameters

- tensor (tensor) input
- axis1 (int) first axis
- axis2 (int) second axis

Returns

Return type Concatenated tensor

```
covid19_npis.model.utils.slice_of_axis (tensor, axis, begin, end)
Returns the tensor where the axis axis is sliced from begin to end
```

Parameters

- tensor (tensor) -
- axis (int) -
- begin (int) -
- end (int) -

Returns

Return type sliced tensor

```
covid19_npis.model.utils.convolution_with_fixed_kernel(data, kernel, data_time_axis, fil-ter axes data=())
```

Convolve data with a time independent kernel. The returned shape is equal to the shape of data. In order avoid constructing a time_length x time_length kernel, the data is decomposed in overlapping frames, with a stride of *padding*, allowing to construct a only padding x time_length sized kernel.

Parameters

- data (tensor) The input tensor
- **kernel** (tensor) Has as shape filter_axes x time. filter_axes can be several axes, where in each dimension a difference kernel is located
- data time axis (int) the axis of data which corresponds to the time axis
- **filter_axes_data** (*tuple*) the axes of *data*, to which the *filter_axes* of *kernel* should be mapped to. Each of this dimension is therefore subject to a different filter

Returns

Return type A convolved tensor with the same shape as data.

```
covid19_npis.model.utils.convolution_with_varying_kernel(data, kernel, data_time_axis, fil-ter_axes_data=())
```

Convolve data with a time dependent kernel. The returned shape is equal to the shape of data. In this implementation, the kernel will be augmented by a time_data axis, and then the inner product with the date will be taken. This is not an optimal implementation, as the most of the entries of the kernel inner product matrix will be zero.

Parameters

- data (tensor) The input tensor
- **kernel** (tensor) Has as shape filter_axes x time_kernel x time_data. filter_axes can be several axes, where in each dimension a difference kernel is located
- data_time_axis (int) the axis of data which corresponds to the time axis
- **filter_axes_data** (tuple) the axes of *data*, to which the *filter_axes* of *kernel* should be mapped to. Each of this dimension is therefore subject to a different filter

Returns

Return type A convolved tensor with the same shape as data.

```
covid19_npis.model.utils.convolution_with_map(data, kernel, modelParams)
```

Parameters data – batch, time, country, agegroup

```
covid19_npis.model.utils.get_filter_axis_data_from_dims (ndim)
    Returns filter axis data from len(new_I_t.shape)
```

4.6. Utility 23

CHAPTER

FIVE

PLOT

There are multiple stages involved before one can start to plot the obtained data.

- For model description, see *Model*.
- Trace data can be converted with covid19_npis.data.convert_trace_to_pandas_list().
- Plotting WIP

5.1 Data converter

```
covid19_npis.da
Converts
the
pymc4
arviz
trace
to
mul-
ti-
ple
pan-
das
dataframes.
```

Also sets

the right

labels for the dimensions i.e splits data by country and age group.

Do not look too

much

into this

function

```
if
    you
    want
    to
    keep
    your
    san-
    ity!
Parameters
    trace
    (arivz
    InferenceDa
    sample_stat
    (pymc4
    sample
    state)
Returns
    Multiindex
    dataframe
    con-
    tain-
    ing
    all
    sam-
    ples
    by
    chain
    and
    other
    di-
    men-
    sions
    de-
```

fined in config.py

```
Return type
list
of
pd.DataFrame
covid19_npis.da
Converts
the
pymc4
arviz
trace
```

for a

26 Chapter 5. Plot

```
a
                                                                                                                      pan-
                                                                                                                      das
                                                                                                                      dataframes.
                                                                                                                      Also
sets the right labels for the dimensions i.e splits data by country and age group.
                                                                                                                      Do
                                                                                                                      not
                                                                                                                      look
                                                                                                                      too
                                                                                                                      much
                                                                                                                      into
                                                                                                                      this
                                                                                                                      func-
                                                                                                                      tion
                                                                                                                      if
                                                                                                                      you
```

ity! **Parameters**

want to keep your san-

single key to

```
trace
(arivz
InferenceDa
```

sample_stat (pymc4

```
sample
state)
```

key (str)

-Name of

vari-

able in mod-

mod el-

5.1. Data converter 27

```
Params
                                                                                                                 data_type
                                                                                                                 (str)
                                                                                                                 Type
                                                                                                                 of
                                                                                                                 trace,
                                                                                                                 gets
                                                                                                                 de-
                                                                                                                 tected
                                                                                                                 au-
                                                                                                                 to-
                                                                                                                 mat-
                                                                                                                 i-
                                                                                                                 cally
                                                                                                                 nor-
                                                                                                                 mally.
Possible values are: "posterior", "prior_predictive", "posterior_predictive". Overwrites automatic behaviour! default:
None
                                                                                                             Returns
                                                                                                                 Multiindex
                                                                                                                 dataframe
                                                                                                                 con-
                                                                                                                 tain-
                                                                                                                 ing
                                                                                                                 all
                                                                                                                 sam-
                                                                                                                 ples
                                                                                                                 by
                                                                                                                 chain
                                                                                                                 and
                                                                                                                 other
                                                                                                                 di-
                                                                                                                 men-
                                                                                                                 sions
                                                                                                                 de-
fined in modelParams.py
                                                                                                             Return type
                                                                                                                 pd.DataFrame
```

5.2 Distri

covid19_npis.pl

```
High
level
plot-
ting
func-
```

28 Chapter 5. Plot

tion for distributions, plots prior and poste-

rior if they are given in the trace.

rior data and prior data. Or only one of both!

Parameters

```
trace
```

```
(arivz.
InferenceDa-
Raw
data
from
pymc4
sam-
pling,
can
```

contain

both pos-

te-

• sample_stat

```
(pymc4 sample state)
```

Used mainly for

shape la-

bels

key (str)

– Name

of the vari-

5.2. Distribution 29

```
able
                                                                                                            to
                                                                                                            plot
                                                                                                            dir_save
                                                                                                            (str,
                                                                                                            optional)
                                                                                                            where
                                                                                                            to
                                                                                                            save
                                                                                                            the
                                                                                                            the
                                                                                                            fig-
                                                                                                            ures
                                                                                                            (ex-
                                                                                                            pect-
                                                                                                            ing
                                                                                                            a
folder). Does not save if None None
                                                                                                            force_matr
                                                                                                            (bool,
                                                                                                            optional)
                                                                                                            Forces
                                                                                                            ma-
                                                                                                            trix
                                                                                                            plot-
                                                                                                            ting
                                                                                                            be-
                                                                                                            haviour
                                                                                                            for
                                                                                                            last
                                                                                                            two
                                                                                                            di-
mensions False
                                                                                                        Returns
                                                                                                            one
                                                                                                            fig-
                                                                                                            ure
                                                                                                            for
                                                                                                            each
                                                                                                            coun-
                                                                                                            try
                                                                                                        Return type
                                                                                                            array
                                                                                                            of
                                                                                                            mpl
```

30 Chapter 5. Plot

fig-

```
ures
                                                                                                            covid19_npis.pl
                                                                                                                  High
                                                                                                                  level
                                                                                                                  func-
                                                                                                                  tion
                                                                                                                  to
                                                                                                                  cre-
                                                                                                                  ate
                                                                                                                  a
                                                                                                                  dis-
                                                                                                                  tri-
                                                                                                                  bu-
                                                                                                                  tion
                                                                                                                  plot
                                                                                                                  for
                                                                                                                  ma-
                                                                                                                  trix
like variables e.g. 'C'. Uses last two dimensions for matrix like plot.
                                                                                                              Parameters
                                                                                                                  trace
                                                                                                                  (arivz.
                                                                                                                  Raw
                                                                                                                  data
                                                                                                                  from \\
```

```
trace
(arivz.
InferenceDa-
Raw
data
from
pymc4
sam-
pling,
can
con-
tain
both
pos-
te-
```

sample_stat

```
(pymc4 sample state)

- Used mainly for shape la-
```

bels

5.2. Distribution 31

rior data and prior data. Or only one of both!

```
key
    (str)
    Name
    of
    the
    vari-
    able
    to
    plot
    dir_save
    (str,
    optional)
    where
    to
    save
    the
    the
   fig-
    ures
    (ex-
    pect-
    ing
    a
Returns
```

folder). Does not save if None None

```
Return type
axes

covid19_npis.pl

Low
level
func-
tion
to
plots
pos-
te-
rior
and
prior
from
```

rays. Parameters

ar-

32 Chapter 5. Plot

```
array_prio
(array_post
Sam-
pling
data
as
ar-
ray,
should
be
fil-
tered
be-
fore-
dist_name
(str)
name
of
dis-
tri-
bu-
tion
for
plot-
ting
dist_math
(str)
math
of
dis-
tri-
bu-
tion
for
plot-
ting
suffix
(str,
optional)
Suf-
fix
```

for

hand. If none it does not get plotted!

5.2. Distribution 33

```
the
                                                                                                               plot
                                                                                                               ti-
                                                                                                               tle
                                                                                                               e.g.
                                                                                                               "age_group_1"
                                                                                                               ax
                                                                                                               (mpl
                                                                                                               axes
                                                                                                               element,
                                                                                                               optional)
                                                                                                               Plot
                                                                                                               into
                                                                                                               an
                                                                                                               ex-
                                                                                                               ist-
                                                                                                               ing
                                                                                                               axes
                                                                                                               el-
                                                                                                               e-
ment None
                                                                                                         covid19_npis.pl
                                                                                                               Low
                                                                                                               level
                                                                                                               plot-
                                                                                                               ting
                                                                                                               func-
                                                                                                               tion,
                                                                                                               plots
                                                                                                               the
                                                                                                               prior
                                                                                                               as
                                                                                                               line
                                                                                                               for
                                                                                                               sam-
                                                                                                               pling
                                                                                                               data
                                                                                                               by
using kernel density estimation. For more references see scipy documentation.
                                                                                                               It
                                                                                                               is
                                                                                                               highly
                                                                                                               rec-
                                                                                                               om-
                                                                                                               mended
                                                                                                               to
                                                                                                               pass
                                                                                                               an
```

34 Chapter 5. Plot

axis
otherwise
the
xlim
may
be

a bit wonky.

Parameters

x Input
values,
from
sampling

ax
(mpl
axes
element,

– Plot

optional)

into an ex-

isting

axes el-

e-

kwargs
(dict,

(- - - /

optional) -Di-

rectly passed to plotting

mpl.

ment None

5.2. Distribution 35

```
covid19_npis.pl
     Low
     level
     plot-
     ting
     func-
     tion
     to
     plot
     an
     sam-
     pling
     data
     as
     his-
     togram.
 Parameters
     x
     In-
     put
     val-
     ues,
     from \\
     sam-
     pling
     bins
     (int,
     optional)
     De-
     fines
     the
     num-
     ber
     of
     equal-
     width
     bins
     in
     the
```

range. 50

ax
(mp1
axes
element,

36 Chapter 5. Plot

```
optional)
                                                                                                             Plot
                                                                                                             into
                                                                                                             an
                                                                                                             ex-
                                                                                                             ist-
                                                                                                             ing
                                                                                                             axes
                                                                                                             el-
                                                                                                             e-
ment None
                                                                                                             kwargs
                                                                                                             (dict,
                                                                                                             optional)
                                                                                                             Di-
                                                                                                             rectly
                                                                                                             passed
                                                                                                             to
                                                                                                             plot-
                                                                                                             ting
                                                                                                             mpl.
                                                                                                       covid19_npis.pl
                                                                                                             helper
                                                                                                             to
                                                                                                             get
                                                                                                             co-
                                                                                                             or-
                                                                                                             di-
                                                                                                             nates
                                                                                                             of
                                                                                                             a
                                                                                                             text
                                                                                                             ob-
                                                                                                             ject
                                                                                                             in
                                                                                                             the
                                                                                                             co-
                                                                                                             or-
dinates of the axes element [0,1]. used for the rectangle backdrop.
                                                                                                             Returns:
                                                                                                             x_min,
                                                                                                             x_max,
                                                                                                             y_min,
                                                                                                             y_max
                                                                                                       covid19_npis.pl
```

5.2. Distribution 37

```
add
a
rect-
an-
gle
to
the
axes
(be-
hind
the
text)
provide
list
of
text
el-
e-
ments
and
pos-
si-
ble
op-
tions \\
passed
to
```

e.g. facecolor="grey", alpha=0.2, zorder=99,

5.3 Time se-ries

mpl.patches.Re

covid19_npis.pl

```
High level plotting fuc-
n-tion to cre-
ate time
```

38 Chapter 5. Plot

```
se-
ries
for
a
a
```

give variable, i.e. plot for every additional dimension. Can only be done for variables with a time or date in shape_labels!

```
Does
NOT
plot
ob-
served
cases,
these
have
to
be
added
man-
u-
ally
for
now.
```

Parameters

```
trace_prior
(trace_post
)
-
Raw
data
from
pymc4
sam-
pling
```

sample_stat (pymc4 sample stae)

key (str) -Name

of the timeseries

5.3. Time series 39

```
vari-
                                                                                                              able
                                                                                                              to
                                                                                                              plot.
                                                                                                              Same
                                                                                                              name
                                                                                                              as
                                                                                                              in
the model definitions.
                                                                                                              sampling_ty
                                                                                                              (str,
                                                                                                              optional)
                                                                                                              Name
                                                                                                              of
                                                                                                              the
                                                                                                              type
                                                                                                              (group)
                                                                                                              in
                                                                                                              the
                                                                                                              arviz
                                                                                                              in-
                                                                                                              fer-
                                                                                                              ence
data. posterior
                                                                                                              {\tt dir\_save}
                                                                                                              (str,
                                                                                                              optional)
                                                                                                              where
                                                                                                              to
                                                                                                              save
                                                                                                              the
                                                                                                              the
                                                                                                              fig-
                                                                                                              ures
                                                                                                              (ex-
                                                                                                              pect-
                                                                                                              ing
                                                                                                              a
folder). Does not save if None None
                                                                                                              observed
                                                                                                              (pd.
                                                                                                              DataFrame,
```

40 Chapter 5. Plot

optional)

```
mod-
el-
Params
dataframe
for
the
cor-
re-
spond-
ing
```

 $observed\ values\ for\ the\ variable\ e.g.\ model Params.pos_tests_data frame$

```
covid19_npis.pl
     low-
     level
     func-
     tion
     to
     plot
     any-
     thing
     that
     has
     a
     date
     on
     the
     x-
     axis.
```

Parameters

```
(array
of
  datetime.
  datetime)
-
times
for
the
  x
  axis

(array,

1d
  or
  2d)
```

5.3. Time series 41

```
data
                                                                                                                    to
                                                                                                                    plot.
                                                                                                                    if
                                                                                                                    2d,
                                                                                                                    we
                                                                                                                    plot
                                                                                                                    the
                                                                                                                    CI
as fill_between (if CI enabled in rc params) if 2d, then first dim is realization and second dim is time matching x if 1d
then first tim is time matching x
                                                                                                                    ax
                                                                                                                    (mpl
                                                                                                                    axes
                                                                                                                    element,
                                                                                                                    optional)
                                                                                                                    plot
                                                                                                                    into
                                                                                                                    an
                                                                                                                    ex-
                                                                                                                    ist-
                                                                                                                    ing
                                                                                                                    axes
                                                                                                                    el-
                                                                                                                    e-
ment. default: None
                                                                                                                    what
                                                                                                                    (str,
                                                                                                                    optional)
                                                                                                                    what
                                                                                                                    type
                                                                                                                    of
                                                                                                                    data
                                                                                                                    is
                                                                                                                    pro-
                                                                                                                    vided
                                                                                                                    in
                                                                                                                    х.
                                                                                                                    sets
                                                                                                                    the
style used for plotting: * data for data points * fcast for model forecast (prediction) * model for model reproduction
of data (past)
                                                                                                                    kwargs
                                                                                                                    (dict,
```

42 Chapter 5. Plot

```
optional)

di-
rectly
passed
to
plot-
ting
mpl.
```

Returns

Return type ax

5.3. Time series 43

Chapter 5. Plot

CHAPTER

SIX

DATA & MODELPARAMS

We apply a utility/abstraction layer to our data to simplify plotting and other operations later.

Before we can construct our model Parameters, we have to import and manipulate/restructure our data a bit as follows:

6.1 Data

```
class covid19_r
      Country
      data
      class!
      Con-
      tains
      death,
      new_cases/posi
      tests,
      daily
      tests,
      in-
      ter-
      ven-
      tions
      and
      con-
      fig
      data
      for
      spe-
      cific
      coun-
      try.
      Re-
```

a gives folder. There are the following specifications for the data:

new_cases.csv

trieves this data from

```
Time/Date
      col-
      umn
      has
      to
      be
      named
      "date"
      or
      "time"
      Age
      group
      columns
      have
      to
      be
      named
      con-
      sis-
      tent
      be-
      tween
      dif-
      fer-
      ent
      data
      and
      coun-
      tries
• interventions.csv
      Time/Date
      col-
      umn
      has
      to
      be
```

```
Time/Date col-
umn
has
to
be
named
"date"
or
"time"

Different
in-
ter-
ven-
```

tion as ad-

```
di-
      tional
      columns
      with
      in-
      ter-
      ven-
      tion
      name
      as
      col-
      umn
      name
• tests.csv
      Time/Date
      col-
      umn
      has
      to
      be
      named
      "date"
      or
      "time"
      Daily
      per-
      formed
      tests
      col-
      umn
      with
      name
      "tests"
· deaths.csv
      Time/Date
      col-
      umn
      has
      to
      be
      named
      "date"
      or
      "time"
```

Daily

6.1. Data 47

```
deaths
      col-
      umn
      has
      to
      be
      named
      "deaths"
      Optional:
      Daily
      deaths
      per
      age
      group
      same
      col-
      umn
      names
      as
      in
      new_cases
• population.csv
      Age
      col-
      umn
      named
      "age"
      Column
      Num-
      ber
      of
      peo-
      ple
      per
      age
      named
      "Pop-
      То-
     tal"
• config.json, dict:
      name
      "coun-
      try_name"
```

```
- age_groups
    [dict]
    "column_name"
    [age_lower,
    age_upper]
    Also
    cal-
    cu-
    lates
    change
    points
    and
    in-
    ter-
    ven-
    tions
    au-
    to-
    mat-
    i-
    cally
    on
    init.
Parameters
    path_to_fo
    (string)
    Filepath
    to
    the
    folder,
    which
    holds
    all
    the
    data
    for
    the
    coun-
    try!
    Should
    be
```

something like

That is

in-

"../data/German

new_cases.csv,

6.1. Data 49

population.csv

```
ter-
ven-
tions.csv,
```

```
create_change_
```

```
Create
change
points
for
a
sin-
gle
in-
ter-
ven-
tion
and
also
adds
in-
ter-
ven-
tions
if
they
do
not
ex-
ist
yet.
```

Parameters

df

```
(pandas.
DataFrame)
```

– Sin-

gle in-

ter-

vention

col-

umn with

date-

time

in-

dex.

Returns

Change points dict

```
{name:[cps
```

```
classmethod ad
    Constructs
    and
    adds
    in-
    ter-
    ven-
    tion
    to
    the
    class
    at-
    tributes
    if
    that
    in-
    ter-
    ven-
    tion
    does
    not
    ex-
    ist
    yet!
    This
    is
    done
    by
    name
```

Parameters

check.

```
• name
(string)
-
Name
of
the
in-
ter-
ven-
tion
```

time_series

```
(pandas.
DataFrame)
-
In-
```

ter-

ven-

6.1. Data 51

dexs as time series with datetime index! classmethod se Manual set prior for effectivity alpha for a intervention via the name.

tion in-

tervention instance.

Parameters

of a In-

That is it

prior_alpha_loc

prior_alpha_sca

name

```
(string)
-
Name
```

of in-

```
ter-
     ven-
     tion
     prior_loc
     (number)
     prior_scale
     (number)
classmethod ge
     Gets
     in-
     ter-
     ven-
     tion
     from
     in-
     ter-
     ven-
     tions
     ar-
     ray
     via
     name
 Returns
     Intervention
class covid19_r
 Parameters
     name
     (string)
     Name
     of
     the
     in-
     ter-
     ven-
     tion
     num_stages
     (int,
     )
```

Number

6.1. Data 53

```
dif-
fer-
ent
stages
the
in-
ter-
ven-
tion
can
have.
prior_alpha
(number,
optional)
prior_alpha
(number,
optional)
```

of

Parameters

class covid19_r

```
prior_date
(number)
Mean
of
prior
dis-
tri-
bu-
tion
for
the
lo-
ca-
tion
(date)
of
the
change
point.
```

gamma_max

```
Gamma
max
value
for
change
point
length
(number,
optional)
Length
of
change
point
prior_date
(number,
optional)
Scale
of
prior
dis-
tri-
bu-
tion
for
the
lo-
ca-
tion
(date)
of
the
change
point.
```

6.2 Mode

```
class covid19_r
```

```
is
a
class
for
```

This

6.2. ModelParams 55

rameters e.g. start date for simulation.

all model paramters. It ismainly used to have a convenient to access data in model wide pa-

This

class also contains the data used for fitting. data frameisthe original dataframe. $data_tensor$ is

a tensor in the correct shape

(time x

countries x age) with values replace by nans when no data is available.

```
Parameters
     countries
     (list,
     covid19_np.
     data.
     Country)
     Data
     ob-
     jects
     for
     mul-
     ti-
     ple
     coun-
     tries
classmethod fr
     Create
     mod-
     el-
     Params
     class
     from
     folder
     con-
     tain-
     ing
     dif-
     feret
     re-
     gions
     or
     coun-
     trys
property count
     Data
     ob-
     jectes
     for
     each
     coun-
     try.
 Returns
     List
     of
     all
     coun-
     try
     ob-
```

6.2. ModelParams 57

```
ject
_update_data_s
    Up-
    date
    Data
    sum-
    mary
property data_
    Data
    sum-
    mary
    for
    mod-
    el-
    Params
    ob-
    ject.
property gamma
    Creates
    ragged
    ten-
    sor
    with
    di-
    men-
    sion
    in-
    ter-
     ven-
    tion,
    coun-
    try,
    change_points
    The
    change
    points
    di-
    men-
    sion
    can
    have
    dif-
    fer-
    ent
    sizes.
property date_
    Creates
```

a tensor

```
with
     di-
     men-
     sion
     in-
     ter-
     ven-
     tion,
     coun-
     try,
     change_points
     Padded
     with
     0.0
     for
     none
     ex-
     ist-
     ing
     change
     points
property pos_t
     New
     cases
     as
     mul-
     ti-
     Col-
     umn
     dataframe
     level
     0
     =
     coun-
     try/region
     and
     level
     1
     age
     group.
property pos_t
     Numpy
     Ar-
     ray
     of
     daily
     new
     cases
     pos-
     i-
     tive
```

6.2. ModelParams 59

```
tests
     for
     coun-
     tries/regions
     and
     age
     groups.
 Returns
     time,
     coun-
     try,
     age-
     group
 Return type
     tf.Tensor
property pos_t
     Tensor
     of
     daily
     new
     cases
     pos-
     i-
     tive
     tests
     for
     coun-
     tries/regions
     and
     age
     groups.
 Returns
     time,
     coun-
     try,
     age-
     group
 Return type
     tf.Tensor
property total
     Dataframe
     of
     to-
     tal
     tests
     in
     all
     coun-
     tries.
```

Date-

```
time
     in-
     dex
     and
     coun-
     try
     columns
     as
     Mul-
     ti-
     in-
     dex.
property total
     returns:
     time,
     coun-
     try
     :rtype:
     tf.Tensor
property death
     Dataframe
     of
     deaths
     in
     all
     coun-
     tries.
     Date-
     time
     in-
     dex
     and
     coun-
     try
     columns
     as
     Mul-
     ti-
     in-
     dex.
property death
     returns:
     time,
     coun-
     try
     :rtype:
     tf.Tensor
property N_dat
     Dataframe
     of
```

popu-

6.2. ModelParams 61

```
la-
     tion
     in
     all
     coun-
     tries.
     Date-
     time
     in-
     dex
     and
     coun-
     try
     columns
     as
     Mul-
     ti-
     in-
     dex.
property N_dat
     Creates
     the
     pop-
     u-
     la-
     tion
     ten-
     sor
     with
     au-
     to-
     mat-
     i-
     cally
     cal-
     cu-
     lated
     age
     strata/brackets.
     coun-
     try,
     age\_groups
property N_dat
     Creates
     the
     pop-
     u-
     la-
     tion
     ten-
     sor
     for
     ev-
```

```
age.
     coun-
     try,
     age
property indic
     Returns
     the
     in-
     dex
     of
     ev-
     ery
     coun-
     try
     when
     the
     first
     case
     is
     re-
     ported.
     It
     could
     be
     that
     for
     some
     coun-
     tries,
     the
     in-
     dex
     is
     later
```

ery

than self.offset_sim_data.

```
returns:
Length
of
the
in-
serted/loaded
data
in
days
:rtype:
num-
```

property lengt

returns: Length

ber

6.2. ModelParams 63

```
of
     the
     sim-
     u-
     la-
     tion
     in
     days.
     :rtype:
     num-
     ber
property splin
     Calculates
     В-
     spline
     ba-
     sis.
 Returns
 Return type
     modelParams.le
     mod-
     el-
     Params.num_sp
_make_global()
     Run
     once
     if
     you
     want
     to
     make
     the
     mod-
     el-
     Params
     global.
     Used
     in
     plot-
```

ting

CHAPTER

SEVEN

CONTRIBUTING

7.1 Code formatting

We use black https://github.com/psf/black as automatic code formatter. Please run your code through it before you open a pull request.

We do not check for formatting in the testing (travis) but have a config in the repository that uses black as a pre-commit hook.

This snippet should get you up and running:

```
conda install -c conda-forge black
conda install -c conda-forge pre-commit
pre-commit install
```

Try to stick to PEP 8. You can use type annotations if you want, but it is not necessary or encouraged.

7.2 Testing

We use travis and pytest. To check your changes locally:

```
python -m pytest --log-level=INFO --log-cli-level=INFO
```

It would be great if anything that is added to the code-base has an according test in the tests folder. We are not there yet, but it is on the todo. Be encouraged to add tests:)

7.3 Documentation

The documentation is built using Sphinx from the docstrings. To test it before submitting, navigate with a terminal to the docs/ directory. Install (if necessary) the required python packages for the documentation and compile the documentation.

```
cd docs
pip install -r piprequirements.txt
make html
```

The documentation can now be be accessed locally in docs/_build/html/index.html. As an example for the docstring formatting you can look at the documentation of covid19_npis.model.disease_spread(). We try to use the numpydoc style.

CHAPTER

EIGHT

DEBUGGING

This is a small list of debug code snippets.

8.1 Debugging nans with tensorflow

It is a little problematic, because some nans occur during the runtime without being an error. Often these are cases where an operation has different implementations based on the value of the input, because it would otherwise lead to a loss of precision.

Therefore we wrote some patches, which put try-except blocks around these code parts and if a error occurs, disable check_numeric for this part.

For patching tensorflow_probability (replace the variables by the correct path):

```
cd scripts/debugging_patches
patch -d {$CONDA_PATH}/envs/{$ENVIRONMENT_NAME}/ -p 0 < filter_nan_errors1.patch
patch -d {$CONDA_PATH}/envs/{$ENVIRONMENT_NAME}/ -p 0 < filter_nan_errors2.patch
patch -d {$CONDA_PATH}/envs/{$ENVIRONMENT_NAME}/ -p 0 < filter_nan_errors3.patch</pre>
```

And then uncomment these line of codes in the run_script. Check_numerics has to enabled only before the optimization, not before the initial sampling, because the nan occurring during the sampling of the gamma distribution hasn't been patched.

```
tf.config.run_functions_eagerly(True)
tf.debugging.enable_check_numerics(stack_height_limit=30, path_length_limit=50)
```

For debugging the VI, it is reasonable to increase the step size, to run more quickly into errors

8.2 Basic usage of logger

```
# Change to debug mode i.e all log.debug is printed
logging.basicConfig(level=logging.DEBUG)

# Use log.debug instead of print
log.debug(f"My var {var}")
```

8.3 Force cpu or other device

```
my_devices = tf.config.experimental.list_physical_devices(device_type="CPU")
tf.config.experimental.set_visible_devices(devices=my_devices, device_type="CPU")
tf.config.set_visible_devices([], "GPU")
```

HOW TO BUILD A DATASET FOR OUR MODEL

To use our model you may want to create your own dataset. In the following we try to guide you through the process of creating your own dataset. Feel free to take a look into our script, we use to create our dataset.

We use a hierarchical for our data as for our model. To add new country or region to our model we first create a folder containing the data.

```
mkdir test_country
```

Next we create a config.json file inside this folder. The json has to contain a unique name for the country/region and the age group brackets. You can add any number of age groups, the name of the groups should be the same across all countries though! We use four different age groups for most of our analysis as follows.

- · config.json, dict:
 - name : "country_name"
 - age_groups [dict]
 - * "column_name": [age_lower, age_upper]

9.1 Population data

Each dataset for a country/region needs to contain population data for every age from 0 to 100. The data should be saved as population.csv! Most of the population data can be found on the UN website.

age	PopTotal
0	831175
1	312190

- Age column named "age"
- Column Number of people per age named "PopTotal"

9.2 New cases/ Positive tests data

We supply the number of positive tested persons per day and age group as a csv file for our country/region. The file has to be named "new_cases.csv" and has to contain the same column names as defined in the config.json! That is the age groups. Date Format should be "%d.%m.%y".

date	age_group_0	age_group_1	age_group_2	age_group_3
01.01.20	103	110	13	130
02.01.20	103	103	103	103
			• • •	

- Time/Date column has to be named "date" or "time"
- Age group columns have to be named consistent between different data and countries!

9.3 Total tests data

The number of total tests performed per day in the country/region is also supplied as a csv file called "tests.csv". The format should be as follows:

date	tests
01.01.20	10323
02.01.20	13032

- Time/Date column has to be named "date" or "time"
- Daily performed tests column with name "tests"

9.4 Number of deaths data

The number of deaths per day in the country/region also supplied as csv file nameed "deaths.csv".

date	deaths
01.01.20	10
02.01.20	35

- Time/Date column has to be named "date" or "time"
- Daily deaths column has to be named "deaths"
- Optional(not working yet): Daily deaths per age group same column names as in new_cases

9.5 Interventions data

The intervention is also added as csv file. The file has to be named "interventions.csv" and can contain any number of interventions. We use the the oxford response tracker for this purpose, but you can also construct your own time series.

You can call/name the interventions whatever you like. The index should be an integer though.

date	school_closing	cancel_events	curfew	
01.01.20	1	0	0	
02.01.20	1	0	0	
03.01.20	1	2	3	
04.01.20	2	2	3	
05.01.20	2	1	0	
	•••	•••		

- Time/Date column has to be named "date" or "time"
- Different intervention as additional columns with intervention name as column name

9.5. Interventions data 71

CHAPTER

TEN

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

С

76 Python Module Index

INDEX

Symbols	A
_add_mpl_rect_around_text() (in module covid19_npis.plot.distributions), 37	<pre>add_intervention() (covid19_npis.data.Country</pre>
_calc_Phi_IFR() (in module covid19_npis.model.deaths), 20	C
_calc_positive_tests() (in module covid19_npis.model.number_of_tests), 15	calc_delayed_deaths() (in module covid19_npis.model.deaths), 20
_calc_reporting_delay_kernel() (in module covid19_npis.model.number_of_tests), 17	Change_point (class in covid19_npis.data), 54 concatenate_axes() (in module
_calc_total_number_of_tests_performed() (in module covid19_npis.model.number_of_tests)	covid19 npis.model.utils), 22
15	covid19_npis.model.number_of_tests), 18
_calculate_Bsplines() (in module covid19_npis.model.number_of_tests), 19	construct_delay_kernel() (in module covid19_npis.model.disease_spread), 11
_construct_phi_age() (in module	construct_E_0_t() (in module
covid19_npis.model.number_of_tests), 16	$covid19_npis.model.disease_spread), 10$
_construct_phi_tests_reported() (in mod- ule covid19_npis.model.number_of_tests), 15	construct_generation_interval() (in mod-
_construct_reporting_delay() (in module	<pre>ule covid19_npis.model.disease_spread), 10 construct_lambda_0() (in module</pre>
covid19_npis.model.deaths), 19	covid19_npis.model.reproduction_number), 13
_construct_reporting_delay() (in module	construct_R_0() (in module
covid19_npis.model.number_of_tests), 16	covid19_npis.model.reproduction_number), 12
_create_distributions() (in module	construct_R_0_old() (in module
covid19_npis.model.reproduction_number), 11	covid19_npis.model.reproduction_number), 13
_distribution() (in module	construct_R_t() (in module
covid19_npis.plot.distributions), 32 _fsigmoid() (in module	covid19_npis.model.reproduction_number), 12
covid19_npis.model.reproduction_number), 11	<pre>construct_testing_state() (in module</pre>
_get_mpl_text_coordinates() (in module	convert_trace_to_dataframe() (in module
covid19_npis.plot.distributions), 37	covid19_npis.data), 26
_make_global() (covid19_npis.ModelParams	convert_trace_to_dataframe_list() (in
method), 64	module covid19_npis.data), 25
_plot_posterior() (in module covid19_npis.plot.distributions), 35	convolution_with_fixed_kernel() (in mod- ule covid19_npis.model.utils), 22
_plot_prior() (in module	convolution_with_map() (in module
$covid 19_npis.plot. distributions), 34$	covid19_npis.model.utils), 23
_timeseries() (in module covid19_npis.plot.time_series), 41	convolution_with_varying_kernel() (in module covid19_npis.model.utils), 23
_update_data_summary()	countries() (covid19_npis.ModelParams property),
(covid19_npis.ModelParams method), 58	57
	Country (class in covid19_npis.data), 45
	covid19_npis.model.deaths(module), 19

```
covid19_npis.model.number_of_tests(mod-
        ule), 14
                                                  length_data() (covid19_npis.ModelParams prop-
covid19 npis.model.reproduction number
                                                          erty), 63
        (module), 11
                                                  length_sim()
                                                                   (covid19_npis.ModelParams prop-
covid19_npis.model.utils(module), 21
                                                          erty), 63
covid19 npis.plot.distributions (module),
                                                  Μ
covid19_npis.plot.time_series (module), 38
                                                  main model() (in module covid19 npis.model), 9
create_change_points()
                                                  match axes() (in module covid19 npis.model.utils),
        (covid19_npis.data.Country method), 50
                                                          2.1
                                                  ModelParams (class in covid19_npis), 55
D
data_summary() (covid19_npis.ModelParams prop-
                                                  Ν
        erty), 58
                                                  N_data_tensor()
                                                                          (covid19_npis.ModelParams
date_data_tensor() (covid19_npis.ModelParams
                                                          property), 62
        property), 58
                                                  N data tensor total()
deaths_data_tensor()
                                                          (covid19 npis.ModelParams property), 62
        (covid19_npis.ModelParams property), 61
                                                  N_dataframe() (covid19_npis.ModelParams prop-
deaths_dataframe() (covid19_npis.ModelParams
                                                          erty), 61
        property), 61
distribution()
                            (in
                                         module
                                                  Р
        covid19 npis.plot.distributions), 28
                                                  pos_tests_data_array()
distribution_matrix()
                                         module
                                                          (covid19_npis.ModelParams property), 59
        covid19_npis.plot.distributions), 31
                                                  pos_tests_data_tensor()
                                                          (covid19_npis.ModelParams property), 60
F
                                                  pos_tests_dataframe()
einsum_indexed()
                             (in
                                         module
                                                          (covid19_npis.ModelParams property), 59
        covid19_npis.model.utils), 21
                                                  positive_axes()
                                                                                            module
                                                          covid19_npis.model.utils), 21
F
from_folder() (covid19_npis.ModelParams class
                                                  S
        method), 57
                                                  set_intervention_alpha_prior()
                                                          (covid19_npis.data.Country class
                                                                                          method),
G
                                                          52
gamma () (in module covid19_npis.model.utils), 21
                                                  slice of axis()
                                                                               (in
                                                                                            module
gamma_data_tensor()
                                                          covid19 npis.model.utils), 22
        (covid19_npis.ModelParams property), 58
                                                  spline_basis() (covid19_npis.ModelParams prop-
                                         module
generate_testing()
                               (in
                                                          erty), 64
        covid19_npis.model.number_of_tests), 14
get_filter_axis_data_from_dims() (in mod-
                                                  Т
        ule covid19_npis.model.utils), 23
                                                  timeseries()
                                                                                            module
                                                                             (in
get_intervention_by_name()
                                                          covid19_npis.plot.time_series), 38
        (covid19_npis.data.Country class method),
                                                  total_tests_data_tensor()
                                                          (covid19_npis.ModelParams property), 61
                                                  total_tests_dataframe()
                                                          (covid19_npis.ModelParams property), 60
indices_begin_data()
        (covid19 npis.ModelParams property), 63
                                                  W
InfectionModel()
                                         module
                                                  weekly_modulation()
                                                                                            module
                                                                                 (in
        covid19_npis.model.disease_spread), 9
                                                          covid19_npis.model.number_of_tests), 14
Intervention (class in covid19_npis.data), 53
```

78 Index